
AT&T at TREC-7Amit Singhal John Choi Donald Hindle David D. LewisFernando PereiraAT&T Labs{Researchfsinghal,choi,hindle,lewis,pereirag@research.att.comAbstractThis year AT&T participated in the ad-hoc task and the Filtering, SDR, and VLC tracks. Most ofour e�ort for TREC-7 was concentrated on SDR and VLC tracks. On the �ltering track, we tested apreliminary version of a text classi�cation toolkit that we have been developing over the last year. Inthe ad-hoc task, we introduce a new tf-factor in our term weighting scheme and use a simpli�ed retrievalalgorithm. The same weighting scheme and algorithm are used in the SDR and the VLC tracks.The results from the SDR track show that retrieval from automatic transcriptions of speech is quitecompetitive with doing retrieval from human transcriptions. Our experiments indicate that documentexpansion can be used to further improve retrieval from automatic transcripts. Results of �ltering trackare in line with our expectations given the early developmental stage of our classi�cation software. Theresults of VLC track do not support our hypothesis that retrieval lists from a distributed search can bee�ectively merged using only the initial part of the documents.1 IntroductionSpoken document retrieval (SDR) and retrieval from very large collections (VLC) are the main areas ofinterest for AT&T at TREC-7. For most of our work, we use an internally modi�ed version of the SMARTretrieval system developed at Cornell University. [1, 8] We are in the process of developing a text classi�cationtoolkit called ATTICS. The �ltering track gave us an opportunity to stress test an early version of this toolkiton a large task.For speech retrieval, we believe that parallel text corpora, for example printed news from the same timeperiod, can be successfully exploited to improve retrieval e�ectiveness of a system. This is especially true forthe news material currently being used in the SDR track. We use these ideas in our SDR track participation.Initial results from the use of a parallel corpus are quite encouraging.As the amount of data available electronically (for example on the Web) grows exponentially, it is becom-ing increasingly hard to maintain a single centralized index to the data. Distributed retrieval is a solution;however most distributed retrieval algorithms expect some cooperation from the individual servers, whichis often hard or even impossible to get. In the VLC track we simulate \totally independent" distributedcollections, and use a new result merging algorithm that leverages the summary text for retrieved documents,usually provided by the search engines, to merge results from various servers.2 Ad-hoc RunsOver the last year, we have modi�ed the SMART retrieval system with the following minor changes: 1) weuse a shorter stop-list of 410 stopwords instead of the standard SMART stop-list of 571 stopwords, 2) weuse a new tokenizer that handles hyphens and ampersands (as in AT&T) in a better manner, 3) phraseformation is governed by a new set of rules, and 4) we have generated a new set of statistical phrases (187,908phrases) from the news corpora included in disks 1{5 (AP, WSJ, SJMN, FT, FBIS, LATimes). These phrasesare used in ad-hoc, SDR, and the SMART run of the �ltering track. We do not use any phrases in the VLCtrack.

d tf factor: 1 + ln(1 + ln(tf)) 0 if tf = 0t idf factor: log(N + 1df)b pivoted byte length normalization factor:10:8 + 0:2� length of document (in bytes)average document length (in bytes)where, tf is the term's frequency in text (query/document)N is the total number of documents in the (training) collectiondf is the number of documents that contain the term, andthe average document length depends on the collection.dnb weighting: d factor � b factordtb weighting: d factor � t factor � b factordtn weighting: d factor � t factorTable 1: Term Weighting SchemesPoor performance of the logarithmic tf -factor|1 + ln(tf)|on the TREC-6 ad-hoc task forced us torevisit our term weighting methodology. The main reasoning for use of a logarithmic tf -factor instead of(say) the raw tf of the terms is to ensure that high tf for one query term in a document does not placethat document ahead of other documents which have multiple query terms but with low tf values. Byusing a logarithmic tf -factor, the e�ect of tf dampens with increasing tf values, and a single match usuallydoesn't outweigh multiple matches. We found that for short queries (our main interest in the ad-hoc task)a logarithmic tf -factor does not adequately reduce the e�ect of large tf values. Therefore we need a tf -function that reduces the tf contribution even more than the logarithmic tf -factor as tf increases. Doublelogarithm|1+ ln(1+ ln(tf))|is an obvious choice. We also like double logarithm since it doesn't introduceany new parameters into our weighting scheme.Next we revisited our pivoted unique document length normalization function. [11] When both wordsand phrases are used as terms in a document vector, the de�nition of the number of unique terms in thedocument is not elegant, especially since phrases are formed from words but are counted as independentunique terms. Earlier work has shown that byte length of a document can be successfully used in a pivotedformula for document length normalization. [11] We switch to using pivoted byte size normalization in ourweighting scheme. As a side bene�t, the weighting code inside SMART is simpli�ed when pivoted byte sizenormalization is used. With these changes, we use the term weighting schemes shown in Table 1.2.1 ApproachThis year we use a simple two pass pseudo-feedback based approach in the ad-hoc task. Many groups haveused such an approach in the last few TRECs. Here are the steps in the process:� Pass-1: Using dtn queries and dnb documents, a �rst-pass retrieval is done.� Expansion: Top ten documents retrieved in the �rst pass are assumed to be relevant to the queryand documents ranked 501{1000 are assumed to be non-relevant. Rocchio's method (with parameters� = 3; � = 2;
 = 2) is used to expand the query by adding twenty new words and �ve new phraseswith highest Rocchio weights. [7] To include the idf -factor in the expansion process, documents aredtb weighted.� Pass-2: The expanded query is used with dnb documents to generate the �nal ranking of 1,000documents.

Task Baseline Expansion from ConservativeTitle+Desc dnb.dtn target collection TREC D12345 Collection EnrichmentTREC-6 (AvgP) 0.2290 0.2661 (+16.2%) 0.2781 (+21.4%) 0.2906 (+26.9%)# Q better/worse 0/0 31/19 34/16TREC-7 (att98atdc) 0.2182 0.2830 (+29.7%) 0.2861 (+31.1%) 0.2961 (+33.7%)# Q better/worse 0/0 25/25 32/18Table 2: E�ect of conservative collection enrichment2.2 Conservative Collection EnrichmentAt TREC-6 some groups (e.g., City University and University of Massachusetts) used a technique that Kwokcalls \collection enrichment". [4] The main idea is to run the �rst pass on a much larger collection than thetarget collection. The hope is that a larger text collection will have more relevant documents for the query andour methods will pull more relevant documents in the top ten or twenty documents, thereby strengtheningthe assumption of relevance employed in the query expansion stage. We employ such a technique in ourad-hoc runs using all TREC disks (1{5) as the large collection.One obvious problem with this approach is possible \domain mismatch". If the top documents retrievedfrom the large collection are from a completely di�erent domain than the top, presumably query-related,documents in the target database, collection enrichment can cause the query to drift away from targetrelevance. During our test with collection enrichment, we found that this indeed was a problem. Thereforewe devised a conservative collection enrichment technique which forces the expanded query to remain in thetarget domain by not allowing any expansion terms proposed only by expansion on the large collection.For example, for query 354: journalist risks, the �rst pass from the large corpus (TREC disks 1{5)retrieves several stories that talk about a list of missing or detained U.N. workers around the world, someof them were killed, including a journalist. Even though these documents are reasonably relevant to thetopic, the focus of these documents is di�erent than the topical documents in the target database. Thesedocuments add terms related to the U.N. and its missing employees to the query and drift the query awayfrom relevance in the target database which does not have reports on missing U.N. journalists.To �x this problem, we allow only those new terms to be added to the query that are proposed by topdocuments retrieved from the target database. To capture some e�ect of collection enrichment, we allow thelarge collection to impact the term selection and the �nal weights of the terms. Here are the steps involvedin our conservative collection enrichment:1. Use the query to retrieve the top ten document from the target collection and build a list of potentialexpansion terms along with their proposed Rocchio weights. Only terms that appear in at least twoof the ten documents and have a positive Rocchio weight are considered.2. Use the query to retrieve ten document from the large collection, and compute the Rocchio weightsfor all the expansion terms proposed in step 1.3. Add term weights proposed in steps 1 and 2 and add the top weighted twenty words and �ve phrasesto the original query. This allows for terms that are weakly proposed (i.e., with a low weight) by thetarget collection but are strongly proposed by the larger collection to enter the query and vice-versa.2.3 ResultsWe submitted two fully-automatic runs based on the above described algorithms. One run, att98atc, wasbased on title-only queries and the other run, att98atdc, used title+description queries. We do not usethe narrative-portion of the TREC topics in any of our runs since we don't believe that real users will everprovide us with such long queries. To highlight the bene�ts of conservative collection enrichment, we �rstpresent the results of running this algorithm on last year's (TREC-6) adhoc task (title+description) andthis year's task (our run att98atdc) in Table 2. The second column in Table 2 shows the baseline average

Run Average Precision Best >= Median < Medianatt98atc (title only) 0.2488 0 32 18att98atdc (title+desc) 0.2961 1 41 8att97atde (title+desc) 0.2940 0 44 6Table 3: Results for adhoc runsprecision of a straight retrieval when documents are dnb weighted and queries are dtn weighted. The thirdcolumn shows the results when only the target database is used in the query expansion process. For theTREC-6 task, we get a 16.2% improvement in average precision. This improvement is almost 30% for thisyear's task. If we use the large collection for query expansion, column four shows that the performanceimproves some more. The last column shows that our conservative collection enrichment further improvesthe performance some.Even though in terms of average precision, the conservative method is not much better than expandingpurely from the large collection, but as the rows labeled # Q better/worse show, it is more stable withrespect to the number of queries that improve or deteriorate in comparison to expansion from the targetcollection (the sensible baseline for this comparison since if we compare to unexpanded queries, which is thebaseline used in the average precision rows, all expansion strategies will show large gains and the relativeperformance of di�erent expansions will be hard to judge). For the TREC-6 task, when expansion is donefrom D12345, 31 queries improve but 19 queries deteriorate (column 4) in comparison to base expansion.But if we do conservative collection enrichment, we cut our losses to 16 queries instead, (column 5) and wegain some in average precision. These numbers are even more striking for this year's task. Expansion fromthe large collection is worse than expansion from the target collection for half the queries, it is better forthe other half. But the conservative expansion reduces our losses from 25 queries to 18 queries only, andthe losses are, in general, smaller. These results show that conservative collection enrichment is more stablethan pure enrichment, even though the gains in term of average precision are not much.The o�cial results for our ad-hoc runs are shown in Table 3. Both the runs att98atc and att98atdc didwell, especially given that the medians are drawn from a pool which includes runs that use the full topictext (rich with content words from the \narrative" portion of the topics) to construct the query. Our runsjust use either very short queries (title only) or short queries (title+description). We also submitted anexperimental run att97atde which enriched the term set by using word cooccurrence pairs as we have usedin the past in the routing task. [10] We were hoping that these pairs would be useful in the ad-hoc settingtoo, but using word-pairs didn't improve our retrieval e�ectiveness.3 SDR RunsWe use our own speech recognizer to process the SDR track data. One of our submitted runs att-s1 uses theone-best recognizer transcript and does retrieval using an algorithm quite similar to the algorithm we haveused in the ad-hoc task. The other run att-s2 uses word-lattices generated by our recognizer and a paralleltext corpora to do document expansion. The expanded documents are then used for retrieval instead of theone-best recognizer transcript.3.1 Speech RecognizerOur speech recognition process involves the following steps. Prior to recognition, each speech story issegmented into approximately one minute long prosodically well-formed segments using a CART basedclassi�er. [2] The resulting segments are submitted to another wideband/narrowband classi�er for selectionof the acoustic model to be used in recognition of that segment.The recognizer is based on a standard time-synchronous beam search algorithm. The probabilities de�n-ing the transduction from text-dependent phone sequences to word sequences are estimated on word levelgrapheme-to-phone mappings and are implemented in the general framework of weighted �nite-state trans-ducers. [6] Transducer composition is used to generate word lattice output.

We use continuous density, three-state, left-to-right, context-dependent hidden Markov phone models.These models were trained on 39-dimensional feature vectors consisting of the �rst 13 mel-frequency cepstralcoe�cients and their �rst and second time derivatives. Training iterations included eigenvector rotations,k-means clustering, maximum likelihood normalization of means and variances and Viterbi alignment. Theoutput probability distributions consist of a weighted mixture of Gaussians with diagonal covariance, witheach mixture containing at most 12 components. The training data were divided into wideband and nar-rowband partitions, resulting in two acoustic models.Language ModelsWe used a two pass recognition process. In the �rst pass, we built word lattices for all the speech using aminimal trigram language model and a beam that we had determined heuristically to provide manageableword lattices. These word lattices were then rescored, by removing the trigram grammar weights whileretaining the acoustic weights and intersecting these lattices with a 4-gram language model. The 1-best pathwas extracted from the rescored lattices.Both the �rst pass trigram language model and the rescoring 4-gram model are standard Katz backo�models [3], using the same 237 thousand word vocabulary. For choosing the vocabulary, all of the wordsfrom the SDR98 training transcript were used. This base vocabulary was supplemented with all words offrequency greater than two appearing in the New York Times and LA Times segments of LDC's NorthAmerican News corpus (LDC Catalog Number: LDC95T21, see www.ldc.upenn.edu), in the period fromJune 1997 through January 1998. The vocabulary includes about 5,000 common acronyms (e.g \N.P.R."),and the training texts were preprocessed to include these acronyms.The language model training was based on three transcription sources (the SDR98 training transcripts,HUB4 transcripts, transcripts of NBC nightly news) and one print source (the LDC NA News corpus ofnewspaper text). The �rst-pass trigram model was built by �rst constructing a backo� language model fromthe 271 million words of training text, yielding 15.8 million 2-grams and 22.4 million 3-grams. This modelwas reduced in size, using the approach of Seymore and Rosenfeld [9], to 1.4 million 2-grams and 1.1 million3-grams. When composed with the lexicon, this smaller trigram model yielded a manageable sized network.The second pass model used 6.2 million 2-grams, 7.8 million 3-grams, and 4.0 million 4-grams. For thismodel, the three transcription sources (SDR, HUB4, NBC) were in e�ect interpolated with the text source(NA News), with the latter being give a weight of 0.1.3.2 Retrieval SystemFor the SDR track, we use the NA News corpus (also used in the language model training described above)as the large collection for conservative collection enrichment (see Section 2.2). Since the test data is datedfrom June 1997 to January 1998, we used news dated from May 1997 to February 1998 (one month beforeand after) from the NA news corpus.AlgorithmWe use the following algorithm in our reference run|att-r1, our two baseline runs|att-b1 and att-b2,and our �rst full SDR run|att-s1. This algorithm is exactly the algorithm we have used in the ad-hoctrack with some parameters changed to deal with the small size of the speech database.� Pass-1: Using dtn queries and dnb documents, a �rst-pass retrieval is done.� Expansion: Top �ve documents retrieved in the �rst pass are assumed to be relevant to the query anddocuments ranked 101{200 are assumed non-relevant. The query is expanded by adding ten new wordsand two new phrases using Rocchio's formulation (parameters � = 2; � = 1;
 = 1). To include theidf -factor in the expansion process, documents are dtb weighted.� The above expansion step is performed once on the target collection and once on the large NA newscollection. Conservative collection enrichment is done as described in Section 2.2.

� Pass-2: The expanded query is used with dnb documents to generate the �nal ranking of 1,000documents.One of the main motivations for using the above algorithm is to keep our ad-hoc algorithm uniform acrosstasks.Lattice Based Document ExpansionThe one-best transcript from a recognizer misses many content words and adds some spurious words to thespoken document. The misses reduce the word-recall (proportion of spoken words that are recognized) andthe spurious words reduce the word-precision (proportion of recognized words that were spoken). We believethat information retrieval algorithms would bene�t from a higher word recall and are robust against poorword precision. An approach to enhance word recall is to add new words that \could have been there" (wordsthat were probably spoken but weren't the top choice of a speech recognizer) to the automatic transcriptionsof a spoken document.Several techniques are plausible for bringing new words into a document. An obvious one from an IR per-spective is document expansion using similar documents: �nd some documents related to a given document,and add new words from the related documents to the document at hand. And from a speech recognitionperspective, the obvious choice is to use word lattices which contain multiple recognition hypotheses for anyutterance. A word lattice contains words that are acoustically similar to the recognized words could havebeen said instead of the words recognized in the one-best transcription.We use both these techniques to do controlled document expansion for our second full SDR run att-s2.In our experiments we found that each method when used alone adds more spurious words to a documentthan is desirable. However, a controlled document expansion that incorporated information from both thesources helps in reducing the spurious words, allowing the good words to still be added to a document.We take the one-best recognition for a story and look for similar stories in the print media (NA news).This is done by simply running the one-best recognition for the story as a raw-tf�idf weighted query on theNA news database. The idea being that important news would also be reported in the print media, and wecan leverage words from there to enrich our spoken documents. We do not enforce any conditions like `thereturned stories from NA news should be from the same day or near the same date as the spoken document',even though one can imagine that this could possibly help.We found that for speech stories that are not reported in the print media, marginally related stories areretrieved in response to the query (speech story), and unrelated words are brought into the story. To containthis problem, we force our expansion algorithm to choose only those words that are also present in the wordlattice generated by our recognizer for the speech story. This restriction guarantees that the words beingadded to a document are also proposed by the speech recognizer, albeit with a low con�dence.The parameters for document expansion were chosen somewhat arbitrarily based on a quick inspectionof the expansion terms and our experience with relevance feedback. We didn't have any testbed to tune ourparameters. The following steps are used:1. Twenty documents are retrieved from the NA news corpus for a given speech document. The one-besttranscription for a speech document weighted using raw-tf�idf is used as a query.2. 25% of the unique words, at most 50, new words are added to the speech document using Rocchio'sformula. I.e., if the original one-best recognition has 80 unique (not counting repetitions) words, then20 new words are added; if it has 200, then 50 new words are added; and if it has 300, then also only50 new words are added. Following are some details of the expansion process:� Rocchio parameters � = 4; � = 1;
 = 0 are used.� Only words that occurred in at least 10 of the 20 documents retrieved in step 1 are used asexpansion terms.� Both the original speech document and the top documents from step 1 are dtb weighted (seeTable 1) for Rocchio's formula. This yields expanded document vectors that have idf in theweights.

Transcription Used in Run WER Term Recall Term PrecisionReference att-r1 0 100 100Baseline-1 att-b1 34.1% 78.98% 78.02%Baseline-2 att-b2 46.9% 68.40% 68.04%Full SDR-1 att-s1 32.4% 81.79% 81.58%Expanded Docs att-s2 | 83.74% 67.50%Table 4: Analysis of recognition and document expansionRetrieval Baseline Expansion from Collection Best Above BelowCondition dnb.dtn target collection NA News Enrichment Median MedianReference 0.4548 0.5083 0.4864 0.4992 5 16 2att-r1 | +11.7% +6.9% +9.8%Baseline-1 0.4115 0.4925 0.4493 0.4700 9 10 4att-b1 | +19.7% +9.2% +14.2%Baseline-2 0.3358 0.3941 0.3983 0.4065 6 14 3att-b2 | +17.4% +18.6% +21.1%Full SDR-1 0.4371 0.5069 0.4839 0.5065 4 16 3att-s1 | +16.0% +10.7% +15.9%Full SDR-2 0.4535 0.5300 0.4981 0.5120 7 13 3att-s2 | +16.0% +10.7% +15.9%Table 5: Results for SDR track3. Idf is removed from the expanded document vectors by dividing by component words' idf s. Now wehave expanded document vectors that are dnb weighted. These expanded documents are used insteadof the one-best transcriptions in the same retrieval algorithm as used in the run att-s1, and this runwas submitted as our second SDR track run att-s2.Results and AnalysisThe recognition word error-rate, average term recall (proportion of spoken words that are recognized), andaverage term precision (proportion of recognized words that are spoken) for various automatic transcriptionsare shown in Table 4. To compute the word recall and the word precision, we take all the stories that havemore than ten index terms (non-stop word-stems as indexed by SMART, multiple occurrences of a stemcounted as one term) in the human transcription and compute how many of the original index-terms (non-stop word-stems only, repetitions not counted) are recognized in the automatic transcription. We also countthe number of spurious terms recognized by a recognizer. We compute per-document term recall and termprecision, and average these values across documents to get the numbers reported in Table 4. We omit allstoried that have less than ten terms since the recall/precision �gures for them are quite unstable. The mainreason behind discounting multiple occurrence of a term is that the tf -factor of our weighting scheme has asimilar e�ect. Recognizing a word once is more important than correctly recognizing multiple occurrencesof the same word.Table 4 shows that the word error rate for our recognizer is 32.4%, slightly better than the 34.6% for themedium error transcriptions provided by NIST. This is also re
ected in the higher term recall and precisionfor our recognizer. Document expansion is doing its job, though not as well as we would like it to. It doesincrease the term recall by another 2% on an average but it signi�cantly reduces term precision from 81.58%to 67.5%. But as discussed in the following results, the deterioration in term precision does not hurt retrievale�ectiveness. This supports our hypothesis that term recall is more important for our retrieval systems.The results for various runs are shown in Table 5. The o�cial numbers are presented in bold in column 5,along with various other numbers. The baseline retrieval results|dnb documents, dtn queries, no queryexpansion|are shown in column 2. The average precision on human transcription is 0.4548. The retrievale�ectiveness falls when retrieval is done on a speech recognizer's automatic transcription of the speech. The

Code Provided By WERHuman NIST 0%CUHTK-S1 Cambridge University 24.8%Dragon98-S1 Dragon Systems 29.8%ATT-S1 AT&T Labs 31.0%NIST-B1 Carnegie Melon (CMU) 34.1%SHEF-S1 She�eld University 36.8%NIST-B2 Carnegie Mellon (CMU) 46.9%DERASRU-S2 DERA 61.5%DERASRU-S1 DERA 66.2%Table 6: Di�erent automatic transcriptions.base e�ectiveness for the medium-error baseline transcription (B1) is 0.4115, a loss of 9.5%. As expected,the average precision falls further to 0.3358 for the high-error recognition (B2).When retrieval is done on our own recognition, which has a marginally higher term recall/precision, theretrieval e�ectiveness jumps from 0.4115 for B1 to 0.4371, a gain of 6.2%, and we are running just 3.9%behind retrieval on human transcriptions. Document expansion removes even this di�erence and retrievalfrom expanded documents is at par with retrieval from human transcriptions. This is quite encouraging,especially when the expansion parameters were chosen without any guidance. This also shows that termrecall is indeed more important than term precision. The term precision for the expanded documentsis noticeably worse than our one-best recognition, and the term-recall is marginally better; however, theretrieval e�ectiveness is better despite the poor term precision.When query expansion from the target collection is done, all results improve noticeably (column 3 inTable 5). Retrieval from our transcriptions is still better than retrieval from the medium-error baselinetranscription, and is at par with retrieval from human transcriptions. Retrieval e�ectiveness on expandeddocuments gets to 0.53 average precision and it actually surpasses the retrieval from human transcriptions(0.5083) by 4.3%. This results is very encouraging. Our conservative collection enrichment hurt us in thisenvironment and our o�cial runs (column 5 in Table 5) are all lower than if we had expanded just usingthe target collection. However, the o�cial runs are still very competitive, both our full-SDR runs att-s1 andatt-s2 are above median for 20 out of 23 queries. The run using expanded documents att-s2 yields 7 bestresults in 23 which is quite a substantial proportion.All these results point us to the possible advantages of doing document expansion in speech retrievalenvironments. These results also tend to con�rm our belief that term recall plays a more important role inretrieval e�ectiveness for speech than term precision. We can a�ord to lose term precision for better termrecall and this should yield improved retrieval e�ectiveness for speech. A larger query set would have madethese results much more robust, but there is a clear pattern in Table 5 indicating that document expansionconsistently yields better results than not doing it.3.3 Cross-Recognizer AnalysisAfter the o�cial conference, we did a more rigorous study of document expansion. We �rst discovered thatconstraining document expansion to allow only terms from the word-lattices generated by our recognizerheld no additional bene�t over not doing so. I.e. we can do document expansion only from NA news andthe results were equally good or better. This also allows us to test document expansion for retrieval fromthe automatic transcriptions provided by other SDR track participants, for which we don't have the word-lattices. Secondly we found that the query expansion parameters used in our SDR runs were sub-optimal.Using the standard set of parameters used in our ad-hoc run yields consistently better results, and has theadded advantage of uniformity of parameters.We test document expansion on di�erent automatic transcriptions provided to NIST by various trackparticipants. Table 6 lists these transcriptions along with their word error rates. We cleaned some timingmistakes in our transcripts and used the correct WER scripts to get the 31% WER reported in Table 6 (asopposed to the 32.4% WER reported in Table 4). Here are the steps involved in document expansion:

Unexpanded Documents Expanded DocumentsTranscript Baseline Query expn. from Coll. Baseline Query expn. from Coll.dnb.dtn target NA News Enrich. dnb.dtn target NA News Enrich.ltt 0.4595 0.5300 0.5211 0.5327 0.5108 0.5549 0.5334 0.5614cuhtk-s1 0.4376 0.5035 0.5202 0.5285 0.5220 0.5372 0.5444 0.5549dragon98-s1 0.4190 0.5100 0.5227 0.5147 0.5061 0.5284 0.5459 0.5483att-s1 0.4353 0.5020 0.5128 0.5251 0.5080 0.5343 0.5505 0.5452nist-b1 0.4104 0.4820 0.4987 0.4954 0.4862 0.5259 0.5314 0.5316shef-s1 0.4073 0.4890 0.5042 0.5085 0.5068 0.5421 0.5355 0.5399nist-b2 0.3352 0.3965 0.4602 0.4220 0.4377 0.4743 0.4961 0.4940derasru-s2 0.3633 0.3962 0.4614 0.4419 0.4585 0.5065 0.5118 0.5199derasru-s1 0.3236 0.3613 0.4604 0.4188 0.4526 0.4849 0.5045 0.4959Table 7: Cross-recognizer analysis.1. Find documents related to a speech document. We do this by running the automatic transcription ofthe speech document as a query (raw-tf�idf weighted) on the NA News corpus and retrieving the tenmost similar documents. In other words, we use the ten nearest neighbors of the speech document inthis process. The documents are weighted by raw-tf�idf when used as a query because we found thatnearest neighbors found using raw-tf�idf weighted documents yield the best expansion results.2. The speech transcriptions are then modi�ed using Rocchio's formula.~Dnew = ~Dold + P10i=1 ~Di10where ~Dold is the initial document vector, ~Di the the vector for the i-th related document, and ~Dnew isthe modi�ed document vector. All documents are dnb weighted (see Table 1). New words are added tothe document. For term selection, the Rocchio weights for new words are multiplied by their idf , theterms are selected, and the idf is stripped from a selected term's �nal weight. Furthermore, to ensurethat this document expansion process doesn't change the e�ective length of the document vectors, andchange the results due to document length normalization e�ects, we force the total weight for all termsin the new vector to be the same as the total weight of all terms in the initial document vector. Weexpand documents by 100% of their original length (i.e. if the original document has 60 indexed terms,then we add 60 new terms to the document).The results for unexpanded as well as the expanded documents are listed in Table 7. The two mainhighlights of these results are:� document expansion yields large improvements across the board, and� document expansion reduces the performance gap between retrieval from perfect and automatic tran-scriptions.These points are highlighted in Figure 1. The left plot shows the average precision on the y-axis, againstthe WER on the x-axis. All number plotted in Figure 1 are for the unexpanded queries (i.e. we use thecolumns marked Baseline in Table 7). This prevents e�ects of query expansion from a�ecting these graphsand allows us to study the e�ects of document expansion in isolation. The horizontal lines are for humantranscriptions whereas the other lines are for the di�erent automatic transcriptions. As we can see in theleft graph, document expansion (solid lines) yields large improvements across the board for this task overnot doing document expansion (dashed lines).The right graph in Figure 1 plots the %-loss from human transcriptions on the y-axis for unexpanded andexpanded documents. The baseline for the expanded documents is the expanded human transcriptions, i.e.the solid horizontal line on the left graph. We observe that for the poorest transcriptions (DERASRU-S1)document expansion yields an improvement of an impressive 40% (over 0.3236) and reduces the performance

Original Documents
Expanded Documents

24.8 29.8 34.1 36.8 46.9 61.5 66.2

0.35

0.4

0.45

0.5

Word Error Rate

A
ve

ra
g

e
P

re
ci

si
o

n

Initial Queries

C
U

H
T

K
−

S
1

D
ra

go
n9

8−
S

1
A

T
T

−
S

1

N
IS

T
−

B
1

S
H

E
F

−
S

1

N
IS

T
−

B
2

D
E

R
A

S
R

U
−

S
2

D
E

R
A

S
R

U
−

S
1

Original Documents
Expanded Documents

24.8 29.8 34.1 36.8 46.9 61.5 66.2

−30

−25

−20

−15

−10

−5

0

Word Error Rate

%
 L

o
ss

 f
ro

m
 H

u
m

an
 T

ra
n

sc
ri

p
ti

o
n

s

Initial Queries

C
U

H
T

K
−

S
1

D
ra

go
n9

8−
S

1
A

T
T

−
S

1

N
IS

T
−

B
1

S
H

E
F

−
S

1

N
IS

T
−

B
2

D
E

R
A

S
R

U
−

S
2

D
E

R
A

S
R

U
−

S
1Figure 1: Raw average precision and %-loss from human transcriptions (initial user queries).gap from human transcription to about 12% instead of the original 30% despite the very high baseline used.The results are similar for other transcriptions.These results indicate that document expansion is indeed a very useful tool for retrieval from this speechcorpus. We should caution that this is a very small test collection and more experimentation is needed,possibly on a larger test collection, before the full e�ect of document expansion could be analyzed in details.4 VLC RunsWe come to the VLC track with the belief that with time the collection sizes will outgrow our capability toe�ciently maintain a single index for a collection. We already see this happening on the Web. A recentlypublished study reports that any single Web search engine covers less than 35% of the Web. However, ifthe collections from various engines are somehow pooled, the coverage improves dramatically. [5] For thisreason, meta-search systems, systems that search multiple search engines and optionally merge the resultsare becoming increasingly available on the Web.Our VLC track participation is modeled like a meta-search system. We divide the 100G collection intotwenty independent collections of about 5G each. Each query is submitted in parallel to each of the twentycollections and their retrieval results are processed in various possible ways to obtain a single �nal rankingfor the whole collection. We assume that each small collection is available through a server , and a usersubmits queries on a client which passes them to the servers, gathers the results and merges them into asingle ranked list for presentation. We further assume that the client has access to some text collection forcomputation of idf values needed in our merging process described below. To make things closer to reality,we force the client to use an entirely di�erent collection (TREC disks 1{5) as its idf collection since manyclients will not have any Web collection (the target collection for the task) to gather idf s.Four runs were submitted, each with a di�erent set of assumptions to study di�erent e�ects. Here is abrief description of the runs. Each server returns its top 20 documents to the client and the client generatesa single ranked list for the 400 documents (20 each from 20 servers).� att98vi: This run assumes the following:1. Each server is running a straight vector match dnb documents and dtn queries (see Table 1). Nopseudo-feedback or query expansion is done at the servers' end.2. Each server returns the �rst 500 bytes (mark-up removed) for each of the top 20 documents tothe client. This simulates the Web search environment where it is commonplace for engines toreturn the initial portion of the documents as a summary on the results page.

3. The client indexes the 400 summaries \on-the-
y" and creates dnb documents. The client alsoindexes the query using dtn weighting (idf is picked from the TREC collection).4. The summaries are ranked by the client using a straight vector match, and the rank of a summaryde�nes the rank of the �nal document. No pseudo-feedback or query expansion is done at theclient's end.Result: Average P@20 0.3570� att98vf: This run is the same as att98vi except that servers return full document text instead of theinitial 500 bytes and full document text is used by the client to produce the �nal ranking.Result: Average P@20 0.5030� att98vie: This run has the following assumptions:1. Each server expands the query using pseudo-feedback.2. The client also expands the query in parallel using pseudo-feedback on its local collection (TREC).3. Each server returns the �rst 500 bytes (summary) for documents retrieved using the expandedquery from step 1.4. The client indexed the 400 summaries \on-the-
y".5. The summaries are ranked by the client using the expanded query from step 2.Result: Average P@20 0.3750� att98vfe: This run is the same as att98vie except that the servers return full document text (insteadof the initial 500 bytes) which is used by the client to produce the �nal ranking.Result: Average P@20 0.5870We wanted to show that merging based on the initial 500 bytes is not much worse from merging basedon the full text of the documents. This indeed was the result in our internal studies in which we split theTREC database into several servers and evaluated our merging methods with TREC queries. However,we are disappointed to see that our run att98vi is noticeably worse than the corresponding full-text runatt98vf. Similarly att98vie is noticeably worse than att98vfe. We would like to investigate this discrepancyin behavior for the TREC documents and the Web documents. On �rst thought, one is inclined to believethat Web documents are just di�erent than more traditional TREC documents, and the initial part of aWeb document is not a very good representative of the entire document (whereas for the TREC documentsit is), but we would like to study this e�ect further.5 Filtering RunsWe used the TREC-7 �ltering track to test an alpha version of ATTICS, our toolkit for machine learning ofclassi�ers for mixed textual and non-textual information. ATTICS di�ers from most text retrieval softwarein its support for numeric and other formatted data, and in its emphasis on classi�cation of streams of datarather than retrieval froma static or slowly changing collection. It di�ers frommostmachine learning softwarein its e�cient and
exible support for textual data, particularly in mapping from structured documents toattribute vectors.ATTICS can be used either as a stand-alone system or as a C++ library that can be embedded in otherapplications. An extensive API and careful use of the C++ class system enable new preprocessors, datatransformations, classi�er types, training methods, and output formats to easily be added to the system.We used ATTICS in stand-alone mode for the TREC-7 �ltering task. Support in ATTICS for incrementaltraining of classi�ers is not yet complete, so only the batch �ltering and routing tasks were attempted. Thisalso meant that in the batch �ltering task we did not take advantage of training on retrieved test documents.ATTICS uses XML internally for document mark-up. Since the SGML mark-up for TREC data obeysXML conventions, processing of TREC data was trivial. For the quick experiment reported here we mapped

the HEAD and TEXT �elds (lower-cased) of the AP documents to a single vector of raw tf counts. Stemmingand stop-wording have not yet been implemented and so were not used.Early runs on TREC and other large data sets showed preprocessing to be unacceptably slow. Theproblem was traced to the extensive use of C++ streams for communication between preprocessor modules,a holdover from a prototype in the Unix pipeline style. A reimplementation achieved a rate of 220MB/hr forcreation of on-disk vectors from on-disk text using one R10000 processor of an SGI Challenge XL with 8GBof RAM. This is still well below the comparable rate (about 3GB/hr) for our latest modi�cation of SMART,but ATTICS can process a much richer set of data types, and the version used was not yet fully optimized.ATTICS development to date has focused almost exclusively on basic systems issues, data modeling, APIdesign, and so on, with little time left for implementing particular learning algorithms. To meet the TRECdeadline, we did a quick implementation in ATTICS of the original Rocchio algorithm. [7] We trained linearmodels for each of the 50 TREC-7 �ltering topics using only the judged AP88 documents, with Rocchioparameters � = 0 (topic descriptions were not used), � = 1, and
 = 1. Negative Rocchio weights werezeroed out, as usual. Within document weights for all training and test data were computed using SMARTLnu style normalization with a slope parameter of 0.2. [11]This �rst set of linear models was used to retrieve the top 5000 scoring AP88 documents. Then a secondset of linear models was trained using the union of the judged AP88 documents and the top 5000 AP88documents, with unjudged documents in the top 5000 being treated as non-relevant, i.e. a query zoningapproach. [12] The second set of linear models were run back over the training documents to score them, anda threshold for each model was chosen that optimized the desired e�ectiveness measure (�ltering measure F1or F3). The models and thresholds were then applied to the test (AP89-90) documents, with the documentsexceeding the threshold constituting the submitted set for batch �ltering.Our batch �ltering submissions (att98fb5 for F1 measure, and att98fb6 for F3 measure) were mediocre(36 of 50 at or above median utility, with 16 tied for best, on att98fb5, and 32 of 50 at or above medianutility, with 11 tied for best, on att98fb6). This was expected given the crude method implemented. Inparticular, the omission of feature selection, stop lists, idf weighting, and dynamic feedback optimizationled to large models with poorly calibrated weights.Our routing run (att98fr4) using the scores output by the Rocchio models was equally poor. Overallaverage precision was 0.275, and per-topic average precision was above median for only 23 of 50 topics, with2 bests. For comparison, we submitted a routing run (att98fr5) based on a modern augmented Rocchioapproach implemented in SMART. The algorithm was a scaled-down version of our TREC-6 run att97rc,and did not use word cooccurrence pairs as features. [10] Overall average precision for this run was 0.419,with per-topic average precision at or above median for 41 of 50 topics, with 5 best. Incorporating moderntraining methods into ATTICS is obviously a next priority for us!6 ConclusionsWe are encouraged by our SDR performance, especially by the possible advantages of document expansionin this environment. We are quite satis�ed by our �ltering performance given the initial developmental stageof the software we are using. We would like to further study meta-searching as a model for searching verylarge collections. We simpli�ed our adhoc algorithm over the complex algorithm we used last year and theresults are still very good.AcknowledgmentsWe are thankful to Anna Litvinova, Mandar Mitra, Marcin Kaszkiel, Yoram Singer, and Dan Stern for theirhelp with various aspects of this work. We are also very grateful to Andrej Ljolje, Mehryar Mohri, andMichael Riley for their help in building the recognizer for the SDR track data.

References[1] Chris Buckley. Implementation of the SMART information retrieval system. Technical Report TR85-686, Department of Computer Science, Cornell University, Ithaca, NY 14853, May 1985.[2] Julia Hirschberg and Christine Nakatani. Using machine learning to identify intonational segments. InProceedings of the AAAI Spring Symposium on Applying Machine Learning to Discourse Processing,Palo Alto, CA, March 1998.[3] S.M. Katz. Estimation of probabilities from sparse data from the language model component of a speechrecognizer. IEEE Transactions of Acoustics, Speech and Signal Processing, pages 400{401, 1987.[4] K.L. Kwok. Improving two-stage ad-hoc retrieval for short queries. In Proceedings of the Twenty FirstAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval,pages 250{256. Association for Computing Machinery, New York, August 1998.[5] Steve Lawrence and C. Lee Giles. Searching the World Wide Web. Science, 280(5360):98, 1998.[6] Fernando C. N. Pereira and Michael D. Riley. Speech recognition by composition of weighted �niteautomata. In Emmanuel Roche and Yves Schabes, editors, Finite-State Language Processing, pages431{453. MIT Press, Cambridge, Massachusetts, 1997.[7] J.J. Rocchio. Relevance feedback in information retrieval. In The SMART Retrieval System|Experiments in Automatic Document Processing, pages 313{323, Englewood Cli�s, NJ, 1971. PrenticeHall, Inc.[8] Gerard Salton, editor. The SMART Retrieval System|Experiments in Automatic Document Retrieval.Prentice Hall Inc., Englewood Cli�s, NJ, 1971.[9] Kristie Seymore and Ronald Rosenfeld. Scalable backo� language models. In ICSLP'96, volume 1, 1996.[10] Amit Singhal. AT&T at TREC-6. In E. M. Voorhees and D. K. Harman, editors, Proceedings of theSixth Text REtrieval Conference (TREC-6), pages 215{226, 1998.[11] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length normalization. In Proceed-ings of the Nineteenth Annual International ACM SIGIR Conference on Research and Development inInformation Retrieval, pages 21{29. Association for Computing Machinery, New York, August 1996.[12] Amit Singhal, Mandar Mitra, and Chris Buckley. Learning routing queries in a query zone. In Proceed-ings of the Twentieth Annual International ACM SIGIR Conference on Research and Development inInformation Retrieval, pages 25{32. Association for Computing Machinery, New York, July 1997.

